An Attentive Inductive Bias for Sequential Recommendation beyond the Self-Attention

Yehjin Shin*, Jeongwhan Choi*, Hyowon Wi, Noseong Park

Yonsei University, Seoul, South Korea {yehjin.shin, jeongwhan.choi, wihyowon, noseong}@yonsei.ac.kr

code: https://github.com/yehjin-shin/BSARec.

AAAI 2024

Introduction

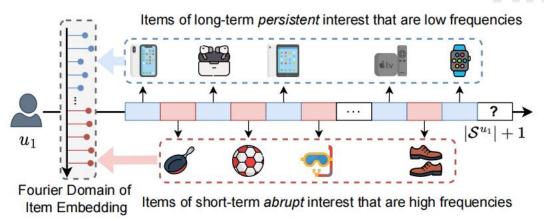


Figure 1: Illustration of high and low-frequency signals in SR.

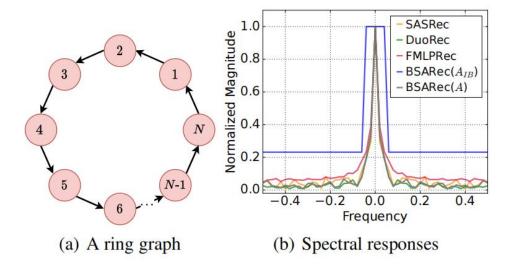


Figure 2: (a) A ring graph with N nodes, and (b) visualization of the filter of the self-attentions in LastFM.

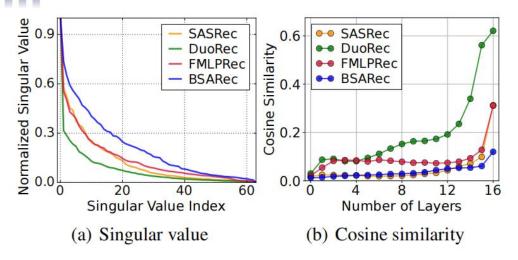


Figure 3: Visualization of oversmoothing in LastFM. The singular values and cosine similarity of user sequence output embedding.

The self-attention causes the oversmoothing problem that Tranformer-based SR models lose feature representation in deep layers. This inevitably causes the model to fail to capture the user's detailed preferences, and performance degradation is a natural result.

We not only alleviate oversmoothing using a high-pass filter as motivation against this background, but also try to capture short-term preferences of user behavior patterns through inductive bias.

Method

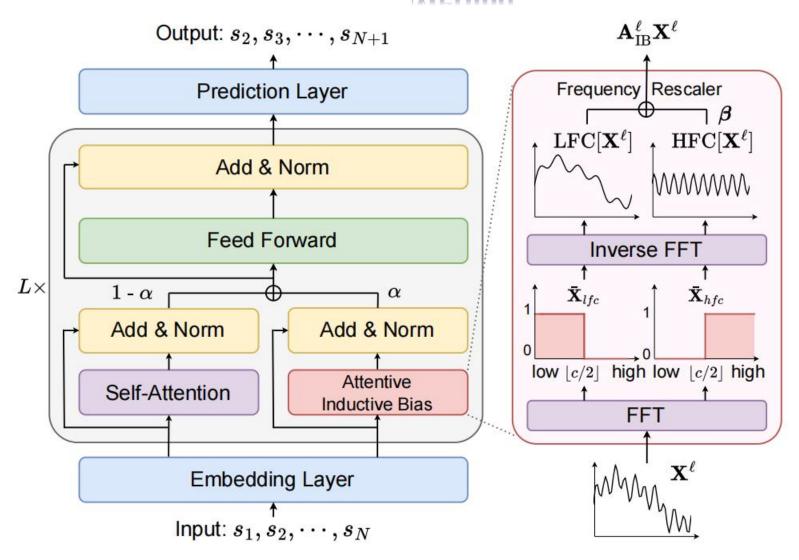
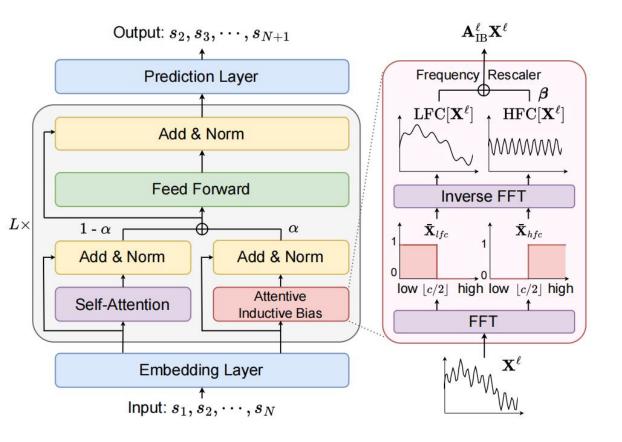



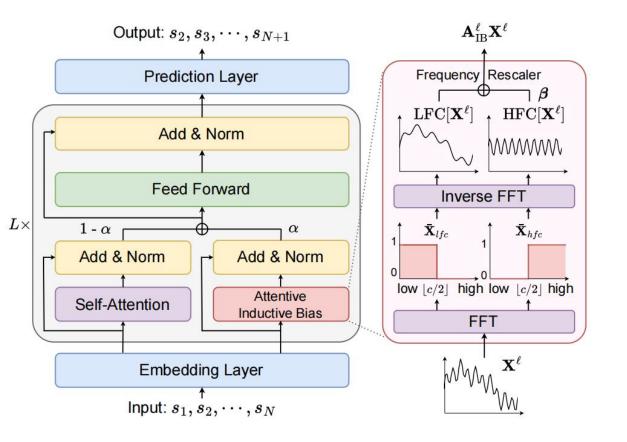
Figure 4: Architecture of our proposed BSARec.

Method

$$\mathbf{A} = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\mathsf{T}}}{\sqrt{d}}\right) \tag{1}$$

$$\mathrm{LFC}[oldsymbol{x}] = [oldsymbol{f}_1, oldsymbol{f}_2, \dots, oldsymbol{f}_c] \, ar{oldsymbol{x}}_{\mathrm{lfc}} \in \mathbb{R}^N$$

$$\mathrm{HFC}[oldsymbol{x}] = \left[oldsymbol{f}_{c+1}, oldsymbol{f}_{c+2}, \dots, oldsymbol{f}_{N}\right] ar{oldsymbol{x}}_{\mathrm{hfc}} \in \mathbb{R}^{N}$$
 (3)


$$\mathbf{E}^{u} = \text{Dropout}(\text{LayerNorm}(\mathbf{E}^{u} + \mathbf{P})) \tag{4}$$

$$\mathbf{S}^{\ell} = \widetilde{\mathbf{A}}^{\ell} \mathbf{X}^{\ell} = \alpha \mathbf{A}_{\mathrm{IB}}^{\ell} \mathbf{X}^{\ell} + (1 - \alpha) \mathbf{A}^{\ell} \mathbf{X}^{\ell}$$
 (5)

$$\widehat{\mathbf{X}}^{\ell} = \mathsf{MSA}(\mathbf{X}^{\ell}) = [\mathbf{S}^1, \mathbf{S}^2, \dots \mathbf{S}^h] \mathbf{W}^O$$
 (6)

$$\mathbf{A}_{\mathrm{IB}}^{\ell} \mathbf{X}^{\ell} = \mathrm{LFC}[\mathbf{X}^{\ell}] + \beta \mathrm{HFC}[\mathbf{X}^{\ell}] \tag{7}$$

Method

$$\widetilde{\mathbf{X}}^{\ell} = (\text{GELU}(\widehat{\mathbf{X}}^{\ell}\mathbf{W}_{1}^{\ell} + \mathbf{b}_{1}^{\ell}))\mathbf{W}_{2}^{\ell} + \mathbf{b}_{2}^{\ell}$$
(8)

$$\mathbf{X}^{\ell+1} = \text{LayerNorm}(\mathbf{X}^{\ell} + \widehat{\mathbf{X}}^{\ell} + \text{Dropout}(\widetilde{\mathbf{X}}^{\ell}))$$
 (9)

$$\hat{y}_i = p(v_{|\mathcal{S}^u|+1}^u = v|\mathcal{S}^u) = \mathbf{e}_v^{\mathsf{T}} \mathbf{X}_{|\mathcal{S}^u|}^L$$
(10)

$$\mathcal{L} = -log \frac{\exp(\hat{y}_g)}{\sum_{i \in |\mathcal{V}|} \exp(\hat{y}_i)}$$
(11)

Method	Inductive Bias	Self-Attention	High-pass Filter
SASRec	X	✓	X
BERT4Rec	X	1	X
FMLPRec	✓	X	X
DuoRec	X	/	×
BSARec	/	1	✓

Table 1: Comparison of existing Transformer-based methods that differ at three points: i) using inductive bias, ii) using self-attentions, and iii) using high-pass filters

	# Users	# Items	# Interactions	Avg. Length	Sparsity
Beauty	22,363	12,101	198,502	8.9	99.93%
Sports	25,598	18,357	296,337	8.3	99.95%
Toys	19,412	11,924	167,597	8.6	99.93%
Yelp	30,431	20,033	316,354	10.4	99.95%
LastFM	1,090	3,646	52,551	48.2	98.68%
ML-1M	6,041	3,417	999,611	165.5	95.16%

Table 5: Statistics of the processed datasets

Datasets	Metric	Caser	GRU4Rec	SASRec	BERT4Rec	FMLPRec	DuoRec	FEARec	BSARec	Improv.
	HR@5	0.0125	0.0169	0.0340	0.0469	0.0346	0.0707	0.0706	0.0736	4.10%
	HR@10 HR@20	0.0225 0.0403	0.0304 0.0527	0.0531 0.0823	0.0705 0.1073	0.0559	0.0965	$\frac{0.0982}{0.1352}$	0.1008 0.1373	2.65% 1.55%
Beauty	NDCG@5	0.0403	0.0104	0.0823	0.0311	0.0222	0.0501	$\frac{0.1332}{0.0512}$	0.0523	2.15%
	NDCG@10	0.0108	0.0147	0.0283	0.0387	0.0222	0.0584	$\frac{0.0512}{0.0601}$	0.0523	1.66%
	NDCG@20	0.0153	0.0203	0.0356	0.0480	0.0369	0.0671	0.0694	0.0703	1.30%
	HR@5	0.0091	0.0118	0.0188	0.0275	0.0220	0.0396	0.0411	0.0426	3.65%
	HR@10	0.0163	0.0187	0.0298	0.0428	0.0336	0.0569	0.0589	0.0612	3.90%
Sports	HR@20	0.0260	0.0303	0.0459	0.0649	0.0525	0.0791	0.0836	0.0858	2.63%
operts	NDCG@5	0.0056	0.0079	0.0124	0.0180	0.0146	0.0276	0.0286	0.0300	4.90%
	NDCG@10	0.0080	0.0101	0.0159	0.0229	0.0183	0.0331	0.0343	0.0360	4.96%
	NDCG@20	0.0104	0.0131	0.0200	0.0284	0.0231	0.0387	0.0405	0.0422	4.20%
	HR@5	0.0095	0.0121	0.0440	0.0412	0.0432	0.0770	0.0783	0.0805	2.81%
	HR@10	0.0161	0.0211	0.0652	0.0635	0.0671	0.1034	0.1054	0.1081	2.56%
Toys	HR@20	0.0268	0.0348	0.0929	0.0939	0.0974	0.1369	0.1397	0.1435	2.72%
50 Tr 3 1 Mon	NDCG@5 NDCG@10	0.0058	0.0077 0.0106	0.0297 0.0366	0.0282 0.0353	0.0288	0.0568 0.0653	$\frac{0.0574}{0.0661}$	0.0589 0.0679	2.61% 2.72%
	NDCG@20	0.0079	0.0100	0.0366	0.0333	0.0363	0.0033	0.0747	0.0768	2.72%
Ř	HR@5	0.0100	0.0140	0.0149	0.0456	0.0159	0.0271	0.0262	0.0275	1.48%
	HR@10	0.0117	0.0130	0.0149	0.0433	0.0139	0.0442	0.0202	0.0465	5.20%
	HR@20	0.0197	0.0383	0.0249	0.0717	0.0490	$\frac{0.0442}{0.0717}$	0.0437	0.0746	4.04%
Yelp	NDCG@5	0.0070	0.0080	0.0091	0.0159	0.0100	0.0170	0.0165	0.0170	0.00%
	NDCG@10	0.0096	0.0109	0.0123	0.0216	0.0142	0.0225	0.0221	0.0231	2.67%
	NDCG@20	0.0131	0.0150	0.0167	0.0287	0.0192	0.0294	0.0285	0.0302	2.72%
	HR@5	0.0303	0.0312	0.0413	0.0294	0.0367	0.0431	0.0431	0.0523	21.35%
	HR@10	0.0431	0.0404	0.0633	0.0459	0.0560	0.0624	0.0587	0.0807	27.49%
LastFM	HR@20	0.0642	0.0541	0.0927	0.0596	0.0826	0.0963	0.0826	0.1174	21.91%
Lasti M	NDCG@5	0.0227	0.0217	0.0284	0.0198	0.0243	0.0300	0.0304	0.0344	13.16%
	NDCG@10	0.0268	0.0245	0.0355	0.0252	0.0306	0.0361	0.0354	0.0435	20.50%
	NDCG@20	0.0321	0.0280	0.0429	0.0286	0.0372	0.0446	0.0414	0.0526	17.94%
	HR@5	0.0927	0.1005	0.1374	0.1512	0.1316	0.1838	0.1834	0.1944	5.77%
	HR@10	0.1556	0.1657	0.2137	0.2346	0.2065	0.2704	0.2705	0.2757	1.92%
ML-1M	HR@20	0.2488	0.2664	0.3245	0.3440	0.3137	0.3738	0.3714	0.3884	3.91%
	NDCG@5	0.0592	0.0619	0.0873	0.1021	0.0846	0.1252	0.1236	0.1306	4.31%
	NDCG@10 NDCG@20	0.0795 0.1028	0.0828 0.1081	0.1116 0.1395	0.1289 0.1564	0.1087 0.1356	$\frac{0.1530}{0.1790}$	0.1516 0.1771	0.1568 0.1851	2.48% 3.41%
	NDCG@20	0.1028	0.1081	0.1393	0.1304	0.1550	0.1790	0.1//1	0.1051	3.41%

Methods	В	eauty	Toys			
Wicthods	HR@20	NDCG@20	HR@20	NDCG@20		
BSARec	0.1373	0.0703	0.1435	0.0768		
Only \mathbf{A} Only \mathbf{A}_{IB} Scalar β	0.1265 0.1338 0.1333	0.0657 0.0677 0.0685	0.1320 0.1402 0.1435	0.0720 0.0744 0.0756		

Table 3: Ablation studies on $\widetilde{\mathbf{A}}$ and $\boldsymbol{\beta}$. More results in other datasets are in Appendix.

Methods	Beauty		S	Sports		Toys		Yelp		LastFM		ML-1M	
Wichiods	HR@20	NDCG@20	HR@20	NDCG@20	HR@20	NDCG@20	HR@20	NDCG@20	HR@20	NDCG@20	HR@20	NDCG@20	
BSARec	0.1373	0.0703	0.0858	0.0422	0.1435	0.0768	0.0746	0.0302	0.1174	0.0526	0.3884	0.1851	
Only A Only A _{IB}	0.1265 0.1338	0.0657 0.0677	0.0779 0.0857	0.0382 0.0416	0.1320 0.1402		0.0618 0.0705	0.0248 0.0287	0.0899 0.1009	0.0430 0.0455	0.3826 0.3780	0.1846 0.1807	
Scalar β	0.1333	0.0685	0.0838	0.0405	0.1435	0.0756	0.0707	0.0291	0.1092	0.0497	0.3762	0.1794	

Table 7: Ablation on all datasets

Methods	Bear	uty	ML-1M			
Wiethous	# params	s/epoch	# params	s/epoch		
BSARec	878,208	12.75	322,368	20.73		
SASRec DuoRec FEARec	877,824 877,824 877,824	10.41 19.26 156.83	321,984 321,984 321,984	19.37 32.33 278.24		

Table 4: The number of parameters and training time (runtime per epoch) on Beauty and ML-1M. More results in other datasets are in Appendix.

Methods	Bear	uty	Spor	rts	To	ys	Yel	p	Last	FM	ML-	1M
	# params	s/epoch	# params	s/epoch	# params	s/epoch	# params	s/epoch	# params	s/epoch	# params	s/epoch
BSARec	878,208	12.75	1,278,592	18.58	866,880	11.63	1,385,856	21.20	337,088	3.11	322,368	20.73
DuoRec	877,824 877,824 877,824	19.26	1,278,208 1,278,208 1,278,208	27.99	866,496 866,496 866,496	18.79	1,385,472 1,385,472 1,385,472	31.08	336,704 336,704 336,704	2.80 4.24 27.82	321,984 321,984 321,984	19.37 32.33 278.24

Table 8: The number of parameters and training time (runtime per epoch) on all datasets

148	Beauty	Sports	Toys	Yelp	LastFM	ML-1M
α	0.7	0.3	0.7	0.7	0.9	0.3
c	5	5	3	3	3	9
h	1	4	1	4	1	4
lr	5×10^{-4}	1×10^{-3}	1×10^{-3}	1×10^{-3}	1×10^{-3}	5×10^{-4}

Table 6: Best hyperparameters of BSARec on all datasets

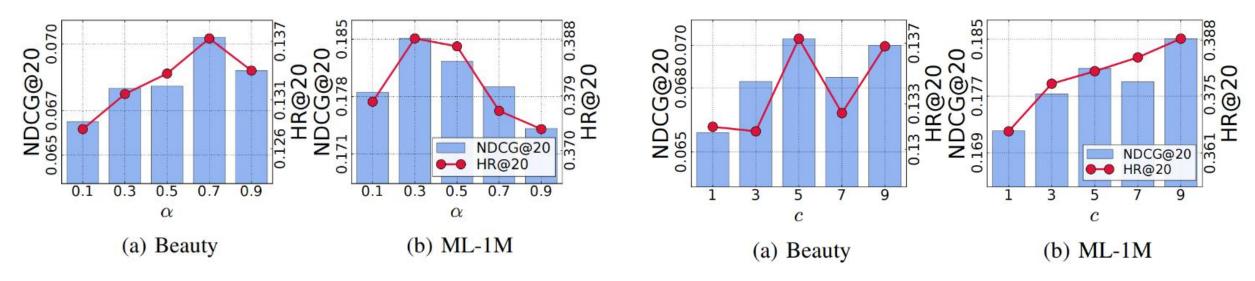


Figure 5: Sensitivity to α . More results in other datasets are in Appendix.

Figure 6: Sensitivity to c. More results in other datasets are in Appendix.

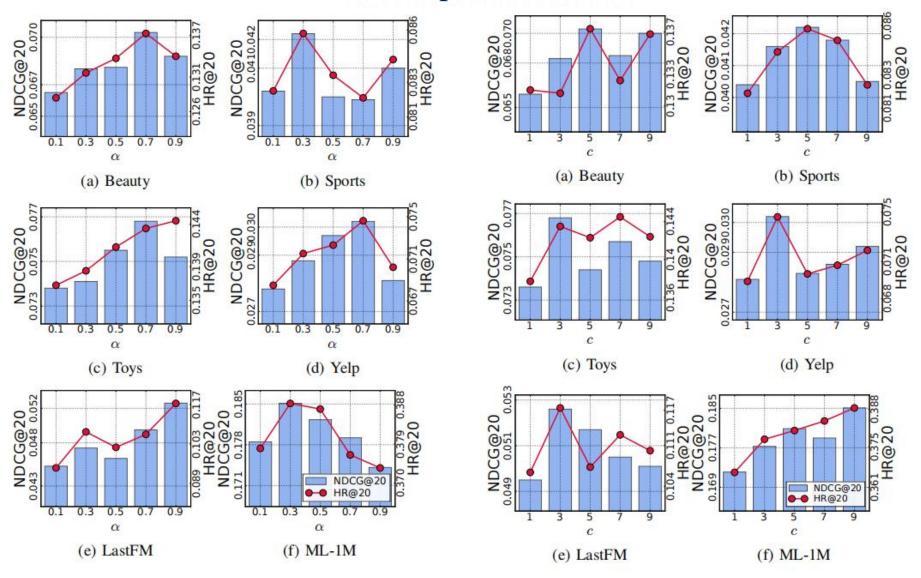


Figure 8: Sensitivity to α on all datasets

Figure 9: Sensitivity to c on all datasets

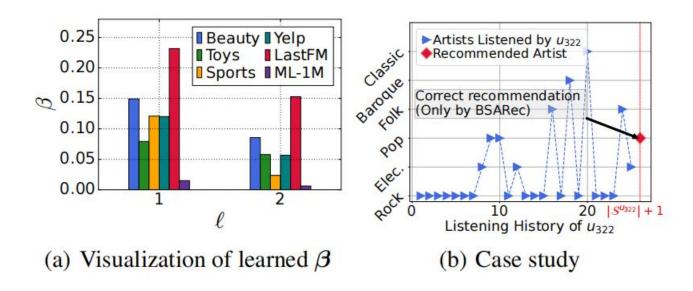


Figure 7: (a) Visualization of learned β , and (b) an example recommendation in LastFM. The y-axis represents the genre of the artist the user listened to.

Thanks

Dataset	Metric	SASRec	FMLPRec	BSARec
	HR@5	0.3512	0.3922	0.4312
	HR@10	0.4434	0.4914	0.5225
Beauty	NDCG@5	0.2628	0.2964	0.3379
•	NDCG@10	0.2926	0.3284	0.3673
	MRR	0.2637	0.2949	0.3350
	HR@5	0.3480	0.3781	0.4133
	HR@10	0.4717	0.4997	0.5303
Sports	NDCG@5	0.2492	0.2739	0.3102
	NDCG@10	0.2891	0.3131	0.3479
	MRR	0.2520	0.2742	0.3089
	HR@5	0.3594	0.3867	0.4224
	HR@10	0.4566	0.4852	0.5180
Toys	NDCG@5	0.2726	0.2926	0.3351
7.9	NDCG@10	0.3040	0.3244	0.3659
	MRR	0.2746	0.2917	0.3349
	HR@5	0.5553	0.6058	0.6447
	HR@10	0.7406	0.7707	0.7848
Yelp	NDCG@5	0.3902	0.4337	0.4824
16.5	NDCG@10	0.4504	0.4873	0.5280
	MRR	0.3748	0.4114	0.4587
	HR@5	0.2716	0.2853	0.3752
	HR@10	0.3972	0.4138	0.5028
LastFM	NDCG@5	0.1871	0.1975	0.2634
	NDCG@10	0.2276	0.2394	0.3045
	MRR	0.1976	0.2081	0.2636
	HR@5	0.6874	0.6763	0.7023
	HR@10	0.7904	0.7858	0.7978
ML-1M	NDCG@5	0.5308	0.5212	0.5646
	NDCG@10	0.5642	0.5568	0.5955
	MRR	0.5020	0.4941	0.5406

Table 9: Performance comparison on 99 negative sampling

$$\mathbf{F} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & \dots & 1\\ 1 & e^{2\pi i} & \dots & e^{2\pi i(N-1)}\\ \vdots & \vdots & \ddots & \vdots\\ 1 & e^{2\pi i(j-1)\cdot 1} & \dots & e^{2\pi i(j-1)\cdot (N-1)}\\ \vdots & \vdots & \ddots & \vdots\\ 1 & e^{2\pi i(N-1)} & \dots & e^{2\pi i(N-1)^2} \end{bmatrix},$$
(12)

$$\mathbf{F}^{-1} = \frac{1}{\sqrt{N}} \mathbf{F}^H, \tag{13}$$

$$\lim_{t \to \infty} \frac{||HFC(f^t(\mathbf{x}))||_2}{||LFC(f^t(\mathbf{x}))||_2} = 0.$$
 (14)

$$\lim_{t \to \infty} \frac{||HFC(f^t(\mathbf{x}))||_2}{||LFC(f^t(\mathbf{x}))||_2} = 0.$$
 (15)

$$\mathbf{A} = \mathbf{PJP}^{-1},\tag{16}$$

$$f^{t}(\boldsymbol{x}) = \mathbf{A}^{t} \boldsymbol{x} = (\mathbf{PJP}^{-1})^{t} \boldsymbol{x}. \tag{17}$$

$$\lim_{t \to \infty} \frac{||HFC[f^t(\boldsymbol{x}) - \lambda_1^t \mathbf{v}_1]||_2}{||LFC[\lambda_1^t \mathbf{v}_1]||_2} = 0$$
 (18)

Thanks